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1. Objectives

The main objective of this three year research effort is to investigate the large-signal
characteristics of a heterojunction bipolar transistor (HBT) and to apply the knowledge gained
to improve both the HBT device and circuit design.

Through innovative approaches for large-signal characterization and modelling, the following
will be achieved:

o Effective parameter extraction from DC and RF measurements to provide feedback to
HBT device design.

0 Accurate large-signal measurement in the frequency domain, taking into account the
effects of harmonic magnitudes and phases.

o Non-linear equivalent circuit model for efficient de-embedding from DC and RF
characteristics.

2. Progress

During the first year of this research effort, many types of measurements have been set up and
performed to fully characterize the heterojunction bipolar transistor (HBT). The measurements
include DC, RF, small signal, power and harmonic tests as will be described in the following.
All measurements were performed on-wafer which eliminates substrate thinning, dicing and
packaging and allows for rapid characterization. The devices characterized were GaAs/AlGaAs
HBTs fabricated by the Air Force Wright Laboratory with either three 1u x 8u emitters, or a
single 1 x 8y emitter. The Al concentration at the base emitter junction was graded from 0.3
to 0.0. The substrate thickness was 625um.

A simple yet accurate ten-element equivalent circuit model has been developed for the HBT.
The model has seven fixed elements and three bias-dependent elements which vary in a nonlinear
fashion. This bias dependant model is accurate to within 2% over the entire bias range. The
power and harmonic characteristics of the heterojunction bipolar transistor have also been
accurately modeled. Pulsed DC and thermal measurements have also been accomplished to
determine the junction temperature and understand its effects on device characteristics.

2.1 DC and RF Characterization

The equipment used for DC characterization and device biasing includes an HP4142
Semiconductor Parametric Analyzer equipped with three source and monitoring units of either
voltages or currents. For high frequency measurements the equipment used included an
HP8510-B, a 40GHz network analyzer with a two port S-parameter test-set, and a HP70206A




26GHz spectrum analyzer. Calibration of the test equipment was performed on-wafer using a
Tektronix calibration substrate.

The DC characterization performed on the HBTs included common emitter I-V, collector and
base current vs base voltage, floating collector, and breakdown measurements. All of these
result in parameters used as starting points for determining RF equivalent circuit parameters.
They are also used to define operating points for high frequency measurements as shown in
Figure 1 where the X's on the common emitter plot indicate the bias points for RF
measurements.

Complete S-parameter measurements from 0.5 to 40GHz have been performed for three HBT
devices from the same wafer under various bias conditions. Figure 2 shows a representative plot
of S11 and S22 on a Smith chart. Figure 3 illustrates the magnitude of the forward current gain,
|H21|, and the power gain with their respective cutoff frequencies essentially equal, i.e.,
fr=f,«= 33GHz for this particular transistor. For the bias dependent model, complete sets of
S-parameters were measured over the full range of operating conditions from the saturation
region to cutoff as shown in Figure 1. Figure 4 shows a plot of |H21| for several bias
conditions. |H21| can be seen to drop off at both high (bias point 6) and low currents (bias
point 1). This nonlinear gain reduction is an important feature included in the bias dependent
modeling. f; is seen to change with bias, especially near cut-off. This behavior is expected
from the dependence of depletion region capacitance on bias at both the base-emitter and base-
collector junctions.

2.2 Bias-Dependent Equivalent Circuit Modeling

Based on the above measurements, a high frequency equivalent circuit model of the HBT was
developed. As a beginning, a simple microwave equivalent circuit was proposed in which
several elements are permitted to vary with bias. The goal was to identify elements that vary
significantly with bias which are critical to the HBT large-signal behavior. As expected, these
bias dependent elements are closely related to the intrinsic device characteristics instead of
parasitics.

The CAD tools used for the modeling include HSPICE [1] a SPICE derivative capable of
extracting bipolar junction transistor parameters from DC data. The LIBRA circuit simulator
[2] is also used to perform the bulk of the modeling work. Libra is a powerful microwave
equivalent circuit simulator ard unlike SPICE, computations are performed in the frequency
domain to yield fast and accurate steady state responses. A feature used extensively is the
capability of LIBRA to fine tune (optimize) a circuit to better fit measured S-parameter data.

Figure 5 shows the proposed microwave equivalent circuit model for a particular device. A
complete DC analysis was performed, and S-parameter measurements were taken at more than
ten bias points in the forward-active region. The parasitic resistances Rb and Re in the model
were extracted from a plot of base and collector current vs base voltage. Approximate values




of Rc and Reb were extracted from the common emitter saturation characteristics. From RF
characteristics, a starting value of Ccb was obtained from the previously measured f,, and f;:

- l r
Jou™)| BrR.C, M

Ro and Cce were estimated from the output reflection coefficient $22. Ceb was estimated from
the base emitter junction area and the doping levels at the junction. A starting value of
Ceb=1pF was used for the 1u x 8u device.

From these initial values the equivalent circuit was optimized to fit S-parameter data at the many
bias conditions allowing all elements to be optimized. This was performed to three devices to
determine which element values were most sensitive to changes in bias conditions.

Figure 6 shows the relative change of each element with bias. From this experiment it was
apparent that the large-signal behavior is dominated by the change of Ceb, Reb, and g,
therefore the final model was one in which all elements are held constant except for these three.
The fixed elements were assigned the average value from the sensitivity analysis above. The
final model with the fixed element values is shown in Figure S.

Starting all from the same model elements, the circuit was optimized separately for each bias
condition allowing only Ceb, Reb, and § to vary. The result is a set of data for these three
elements versus the different bias conditions. Figure 7 is a combined graph of these three
elements versus the collector current bias. The expected nonlinear behavior of Ceb and Reb is
apparent, and the typical 3 reduction at high and low current levels is seen. The increasing and
decreasing behavior of Ceb and Reb are consistent with bipolar transistor theory and are fit very
well by the exponential expressions:

I

R,,=K.exp(—=) 2
I

Ceb=Kcexp( +; ) (3)

[

A representative plot of modeled and measured data is shown in Figure 8. Agreement is very
good over the entire frequency range. The calculated mean squared error for all bias points is
below two percent.




2.3 Pulsed DC Measurements

For on-wafer measurements even at moderate power levels, un-packaged and un-thinned HBTs
exhibit significant thermal effects. For the HBT, the undesirable thermal effects result in a
reduction of gain. To analyze the thermal effects and simulate packaged device performance,
pulsed DC measurements have been performed to reduce the average power hence junction
temperature.

Figure 9 shows the measurement configuration where a pulsed base voltage was adjusted to
obtain a desired base current. The average HBT base current was measured through Ry and
the average collector current was measured through V.. C, supplies the current pulse to the
collector while keeping the voltage fixed. R, and R, are added to reduce reflections and R,
allows monitoring of the emitter current waveform through an oscilloscope.

For the particular HBT's measured, an average thermal time constant of Sus was found. At pulse
widths of 1us, thermal effects were found to be negligible, so actual pulsed I-V data was taken
at this pulse width. A duty cycle of 1/2 was used, which reduces the total power through the
device by 1/2. Figure 10 shows the common emitter I-V characteristics of the single 1y x 8u
emitter HBT on a 625u substrate. For this configuration, the pulsed measurement significantly
reduced the thermal effects.

2.4 Thermal Measurements

It is important to obtain the base-emitter junction temperature for a range of power levels to
fully quantify the thermal effects of the HBT. The base emitter voltage (V,,) was used as a
temperature reference because at a constant base current, V. is a function of temperature. The
dependence of V,, on temperature was obtained empirically and used to find the junction
temperature during normal operation. This temperature dependence was compared to theoretical
calculations and found to be accurate.

To obtain the temperature dependence of V,., several low power I-V measurements were
performed on a device heated to a variety of known temperatures from 27°C to 190°C. These
calibration measurements were performed on the device mounted in a metal TO-package which
was connected to a Teflon test fixture and placed in an oven. Figure 11 shows the base current
characteristics at the different ambient temperatures. This dependence was used to find the
junction temperature of the device operated at different power levels in a room temperature
ambient. A common emitter measurement was taken at I, =4mA and V,, was monitored as the
device power increased with the rising V... The junction temperature for each power level was
calculated from V.. The resulting thermal resistance is 1700°C/W.

This thermal resistance from the temperature measurements was compared with a three-
dimensional heat flow aneiysis [3]. The exact solution of this heat flow was formulated in terms




of infinite sums, and evaluated up to three digit accuracy. Since the actual chip was not square
as required in the simulation, a maximum and minimum dimension were chosen, and the
resulting range of possible temperatures are shown in Figure 12 along with the measured
junction temperature. The previous measured junction temperature values are seen to fall well
within the range of this heat flow aualysis.

From the determined junction temperature, the change in current gain, 8, is shown in Figure 13
to be a approximately a linear function of temperature. The gain is reduced almost 10% at a
junction temperature of 150°C.

2.5 Power and Harmonic Large Signal Modeling

On-wafer power and harmonic measurements have been performed on HBT’s with three 1u x
8 emitter fingers. Since the measurements were performed before substrate thinning, a pulsed
measurement technique was developed to reduce the heating effects. As a result, the maximum
output power exceeded 2 W/mm which is twice the value under CW conditions.

The measurements were taken at 5.5 GHz and the RF input was modulated with a pulse width
of Sus with 20% duty cycle. A common-emitter configuration was used with a constant base
voltage bias. Both Class A and Class AB bias conditions were used. The class A results (shown
in Figure 14) have higher gain, but lower output power than the class AB results. The power-
added efficiency is lower than 20% for both classes. These low efficiencies are due to the fixed
500 loading condition, and higher efficiencies are expected under optimum matching conditions.

Harmonic measurements have also been performed for a range of input power levels. To model
the harmonic behavior of the HBT as well as general S-parameter response, a technique is being
developed for building a large-signal model based entirely on S-parameter measurements.
Empirical formulas are proposed to characterize the nonlinear conductances, current gain, and
transit time allowing them to be extracted from small-signal S-parameter measurements. The
model has five nonlinear elements: both base-emitter and base-collector resistances and
capacitances, and the transconductance. The nonlinear elements are extracted by fitting bias-
dependent small-signal element values to the empirical expression for its corresponding nonlinear
large-signal element.

For a 500 loading condition the class A harmonic measurements and simulations are shown in
Figure 15. The simulation produced excellent agreement to the measurement. From a time
domain analysis of the large-signal model, the saturation of output power is seen to occur when
the collector voltage swings from the cutoff to the saturation region; this is where the second and
fourth harmonics are reduced to a local minimum.

2.6 Conclusion

Extensive DC and RF characterization has been performed for evaluation of device performance




and extraction of model elements. Pulsed DC and high temperature measurements have also
been performed to analyze the thermal resistance and relate actual junction temperature to device
performance.

A simple yet accurate ten-element equivalent circuit model has been developed for the HBT.
The model bas seven fixed elements and three bias-dependent elements which vary in a nonlinear
fashion. All ihree elements hav. simple functional forms making them efficient for simulations;
two are simpic exponertials while the third is an inverted "U". The model is compared to
measured S-parameter data with less than 2% mean square error.

A large-sigaal model is being developed by using empirical formals for five nonlinear elements.
This model has been compared to power and harmonic measurements yielding excellent
agreerient. This model has also been used to verify time domain explanations for power
saturatic:at and harmonic variations with increasing input power.

2.7 Future Work

Work will continue relating the bias-dependence of model elements to the large-signal microwave
response. Actual large-signal microwave measurements will be taken, and currently a pulsed
technique is being developed. The model will be compared and modified based on the measu.cJ
results.

Further DC pulsed measurements will be performed with duty cycles less than 10% and pulse
widths less than 1us to ensure that the pulsed power is not raising the junction tem.per.ture
significantly. Additional thermal measurements are also required to include higher temperature
measurements, and to reduce power during these measurements. A pulsed technique will be
used where the junction is first self-heated at normal operating conditions, then the junction
temperature is measured by a short lower power pulse. From these measurements, a knowledge
of the junction temperature at any DC bias condition can be obtained, as well as the junction
temperature within the large-signal RF voltage swing. With accurate knowledge of the junction
temperature during operating conditions, modeling of the thermal effects of the HBT can be
achieved. This model will be incorporated into the overall large-signal model. To test its
versatility, model results will be compared to devices of varying size and physical structure.
Devices with thinned substrates will also be tested to verify thermal model predictions.
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Figure 1. Common emitter response of an HBT.
Bias points for RF measurments are also indicated.
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Figure 2, HBT reflection coefficients.

Input reflection (S11) and output reflection (S22) give the input and output complex
impedances at microwave frequencies. S11 and $22 are swept from 0.5GHz to 40GHz
(right to left).
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Figure 3. Forward current gain and power gain.
Forward current gain (}H21}) has a unity gain at f;= 33GHz. Power Gain (MSG and
MAG) has a cutoff at f, .= 33GHz also.
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Figure 4. RF current gain for various bias points.
Current gain drops at low and high currents as in DC measurements.
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Figure 5. Final bias dependent model with element values.
Reb, Ceb and 3 are allowed to vary with bias while the remainder of the elements are
fixed as noted.
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Ceb, Reb, and § are seen to vary the greatest with bias.

Figure 6. Variation of model parameters with bias.
constant in the final analysis.
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Figure 7. Bias dependence of key nonlinear elements.

All three elements which are allowed to vary with bias show non-linear dependence on
the collector current. Reb and Ceb are essentially exponential functions, while 8 shows
the typical reduction at high and low currents.
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Figure 8. Modeled versus measured current and power gains.
Forward current gain (}H21}) and power gain (MAG and MSG) show excellent
agreement to measured data.
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Figure 9. Pulsed measurement setup.
Pulses <1 constant current are applied to the base of the HBT and the average collector
current is measured. The actual pulsed collector current value is calculated from the

known duty cycle.
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Figure 10. Pulsed I-V characteristics.
Thermal effects are significantly reduced with a 1us pulsed base current.
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Figure 11. Dependence of base current on V,, and ambient temperature.
The base current has a strong and predictable dependence on temperature.
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Figure 12. Junction temperature comparison to chip model.

The calibrated junction temperature falls within the maximum and minimum

temperatures as computed from the chip dimensions.
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Figure 13. Current gain versus temperature,
The current gain reduction is almost linear with temperature.
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Figure 13. Current gain versus temperature.
The current gain reduction is almost linear with temperature.
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Figure 14. HBT output power and efficiency.
Measurement is obtained for class A operation with S0Q loading condition. Optimum
impedance matching would increase efficiency.
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Measured data: No.428 Ve=3V, lco=10mA
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Figure 15. Harmonic measurement and simulation.

Measurement and simulation are for class a operation and 509 loading condition.
Output power saturation is due to signal swings into cutoff and saturation regions, this
also corresponds to the 2nd and 4th harmonic minimums.
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